This is an excerpt from the Python Data Science Handbook by Jake VanderPlas; Jupyter notebooks are available on GitHub.

The text is released under the CC-BY-NC-ND license, and code is released under the MIT license. If you find this content useful, please consider supporting the work by buying the book!

Combinando datos: concatenación y anexión

In [1]:
import pandas as pd
import numpy as np
In [2]:
def make_df(cols, ind):
    """Quickly make a DataFrame"""
    data = {c: [str(c) + str(i) for i in ind]
            for c in cols}
    return pd.DataFrame(data, ind)

# example DataFrame
make_df('ABC', range(3))
Out[2]:
A B C
0 A0 B0 C0
1 A1 B1 C1
2 A2 B2 C2
In [3]:
class display(object):
    """Display HTML representation of multiple objects"""
    template = """<div style="float: left; padding: 10px;">
    <p style='font-family:"Courier New", Courier, monospace'>{0}</p>{1}
    </div>"""
    def __init__(self, *args):
        self.args = args
        
    def _repr_html_(self):
        return '\n'.join(self.template.format(a, eval(a)._repr_html_())
                         for a in self.args)
    
    def __repr__(self):
        return '\n\n'.join(a + '\n' + repr(eval(a))
                           for a in self.args)
    

Recordatorio: Concatenación de NumPy Arrays

In [4]:
x = [1, 2, 3]
y = [4, 5, 6]
z = [7, 8, 9]
np.concatenate([x, y, z])
Out[4]:
array([1, 2, 3, 4, 5, 6, 7, 8, 9])
In [5]:
x = [[1, 2],
     [3, 4]]
np.concatenate([x, x], axis=1)
Out[5]:
array([[1, 2, 1, 2],
       [3, 4, 3, 4]])

Concatenación simple con pd.concat

In [6]:
ser1 = pd.Series(['A', 'B', 'C'], index=[1, 2, 3])
ser2 = pd.Series(['D', 'E', 'F'], index=[4, 5, 6])
pd.concat([ser1, ser2])
Out[6]:
1    A
2    B
3    C
4    D
5    E
6    F
dtype: object
In [7]:
df1 = make_df('AB', [1, 2])
df2 = make_df('AB', [3, 4])
display('df1', 'df2', 'pd.concat([df1, df2])')
Out[7]:

df1

A B
1 A1 B1
2 A2 B2

df2

A B
3 A3 B3
4 A4 B4

pd.concat([df1, df2])

A B
1 A1 B1
2 A2 B2
3 A3 B3
4 A4 B4
In [8]:
df3 = make_df('AB', [0, 1])
df4 = make_df('CD', [0, 1])
display('df3', 'df4', "pd.concat([df3, df4], axis='col')")
Out[8]:

df3

A B
0 A0 B0
1 A1 B1

df4

C D
0 C0 D0
1 C1 D1

pd.concat([df3, df4], axis='col')

A B C D
0 A0 B0 C0 D0
1 A1 B1 C1 D1

Indices duplicados

In [9]:
x = make_df('AB', [0, 1])
y = make_df('AB', [2, 3])
y.index = x.index  # make duplicate indices!
display('x', 'y', 'pd.concat([x, y])')
Out[9]:

x

A B
0 A0 B0
1 A1 B1

y

A B
0 A2 B2
1 A3 B3

pd.concat([x, y])

A B
0 A0 B0
1 A1 B1
0 A2 B2
1 A3 B3

Detectando indices repetidos como un error

In [10]:
try:
    pd.concat([x, y], verify_integrity=True)
except ValueError as e:
    print("ValueError:", e)
ValueError: Indexes have overlapping values: [0, 1]

Ignorando el índice

In [11]:
display('x', 'y', 'pd.concat([x, y], ignore_index=True)')
Out[11]:

x

A B
0 A0 B0
1 A1 B1

y

A B
0 A2 B2
1 A3 B3

pd.concat([x, y], ignore_index=True)

A B
0 A0 B0
1 A1 B1
2 A2 B2
3 A3 B3

MultiIndex keys

In [12]:
display('x', 'y', "pd.concat([x, y], keys=['x', 'y'])")
Out[12]:

x

A B
0 A0 B0
1 A1 B1

y

A B
0 A2 B2
1 A3 B3

pd.concat([x, y], keys=['x', 'y'])

A B
x 0 A0 B0
1 A1 B1
y 0 A2 B2
1 A3 B3

Concatenación con uniones

In [13]:
df5 = make_df('ABC', [1, 2])
df6 = make_df('BCD', [3, 4])
display('df5', 'df6', 'pd.concat([df5, df6])')
Out[13]:

df5

A B C
1 A1 B1 C1
2 A2 B2 C2

df6

B C D
3 B3 C3 D3
4 B4 C4 D4

pd.concat([df5, df6])

A B C D
1 A1 B1 C1 NaN
2 A2 B2 C2 NaN
3 NaN B3 C3 D3
4 NaN B4 C4 D4
In [14]:
display('df5', 'df6',
        "pd.concat([df5, df6], join='inner')")
Out[14]:

df5

A B C
1 A1 B1 C1
2 A2 B2 C2

df6

B C D
3 B3 C3 D3
4 B4 C4 D4

pd.concat([df5, df6], join='inner')

B C
1 B1 C1
2 B2 C2
3 B3 C3
4 B4 C4
In [15]:
display('df5', 'df6',
        "pd.concat([df5, df6], join_axes=[df5.columns])")
Out[15]:

df5

A B C
1 A1 B1 C1
2 A2 B2 C2

df6

B C D
3 B3 C3 D3
4 B4 C4 D4

pd.concat([df5, df6], join_axes=[df5.columns])

A B C
1 A1 B1 C1
2 A2 B2 C2
3 NaN B3 C3
4 NaN B4 C4

El método append()

In [16]:
display('df1', 'df2', 'df1.append(df2)')
Out[16]:

df1

A B
1 A1 B1
2 A2 B2

df2

A B
3 A3 B3
4 A4 B4

df1.append(df2)

A B
1 A1 B1
2 A2 B2
3 A3 B3
4 A4 B4